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Abstract

We propose a copositive relaxation framework to calculate both upper and lower bounds for prices

of some European options with non-convex payoffs when first and second moments of underlying

assets are known. Computational results shows that these upper and lower bounds are reasonably

good for call options on the minimum of multiple assets and put options on the maximum of multiple

assets.

1 Introduction

Option valuation is important for a wide variety of hedging and investment purposes. Black and Scholes

[3] derive a pricing formula for a European call option on a single asset with no-arbitrage arguments

and the lognormal distribution assumption of the underlying asset price. Merton [9] provide bounds on

option prices with no assumption on the distribution of the asset price. Given the mean and variance

of the asset price, Lo [7] obtains an upper bound for the European option price based on this single

asset. This result is generalized in Bertsimas and Popescu [1]. In the case of options written on

multiple underlying assets, Boyle and Lim [4] provides upper bounds for European call options on the

maximum of several assets. Zuluaga and Peña [13] obtain these bounds using moment duality and conic

programming.
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Contributions and Paper Outline

The options considered in these papers have convex payoff functions. Given first and second moments

of underlying asset prices, a simple tight lower bound can be calculated using Jensen’s inequality. In

this paper, we consider a class of European options with non-convex payoff, the call option written on

the minimum of several assets. Similarly, put options on the maximum of several assets are also options

with non-convex payoff functions. Both upper and lower bounds for prices of European call options on

the minimum of several assets calculated using copositive relaxation are considered in Section 2 and 3.

Some computational results for these call and put options are reported in Section 4.

2 Upper Bounds

We consider the European call options written on the minimum of n assets. At maturity, these assets

have price X1, . . . , Xn respectively. If the option strike price is K, then the expected payoff can be

calculated as follows:

P = E[( min
1≤k≤n

Xk −K)+]. (1)

The rational option price can be obtained by discounting this expectation at the risk-free rate under

the no-arbitrage assumption. Therefore, we can firstly derive bounds for this expected payoff P without

discount factor involvement and obtain bounds for the option price later.

We do not assume any distribution models for the multivariate nonnegative random variable X =

(X1, . . . , Xn). Given that first and second moments of X, E[X] = µ and E[XXT ] = Q, we would

like to calculate the tight upper bound Pmax = maxX∼(µ,Q)+ E[(min1≤k≤nXk−K)+] and lower bound

Pmin = minX∼(µ,Q)+ E[(min1≤k≤nXk −K)+]. In this section, we focus on upper bounds while lower

bounds will be considered in Section 3.

We have, the upper bound Pmax is the optimal value of the following optimization problem:

Pmax = maxf
∫

Rn
+

(min1≤k≤n xk −K)+f(x)dx

s.t.
∫

Rn
+
xkf(x)dx = µk, ∀ k = 1, . . . , n,∫

Rn
+
xkxlf(x)dx = Qkl, ∀ 1 ≤ k ≤ l ≤ n,∫

Rn
+
f(x)dx = 1,

f(x) ≥ 0, ∀x ∈ Rn
+,

(2)

where f is a probability density function.
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Taking dual of Problem (2) (see Bertsimas and Popescu [2]), we obtain the following dual problem:

Pu = minY ,y,y0 Q · Y + µTy + y0

s.t. xTY x+ xTy + y0 ≥ (min1≤k≤n xk −K)+, ∀x ∈ Rn
+,

or equivalently,

Pu = minY ,y,y0 Q · Y + µTy + y0

s.t. xTY x+ xTy + y0 ≥ 0, ∀x ∈ Rn
+,

xTY x+ xTy + y0 ≥ min1≤k≤n xk −K, ∀x ∈ Rn
+.

(3)

Weak duality shows that Pu ≥ Pmax, which means Pu is an upper bound for the expected payoff P .

Under a weak Slater condition on moments of X, strong duality holds and Pu = Pmax, which becomes

a tight upper bound (see Bertsimas and Popescu [2] and references therein).

We now attempt to reformulate Problem (3). The first constraint is equivalent to a copositive matrix

constraint as shown in the following lemma:

Lemma 1 xTY x+ xTy + y0 ≥ 0 for all x ∈ Rn
+ if and only if Ȳ =

 Y y
2

y
2
T y0

 is copositive.

Proof. We have:

xTY x+ xTy + y0 =

 x

1

T  Y y
2

y
2
T y0

 x

1

 .

If the matrix Ȳ is copositive, then clearly xTY x+xTy+ y0 ≥ 0 for all x ∈ Rn
+ as (x, 1) ∈ Rn+1

+ for all

x ∈ Rn
+.

Conversely, if xTY x + xTy + y0 ≥ 0 for all x ∈ Rn
+, we prove that xTY x also nonnegative

for all x ∈ Rn
+. Assume that there exists x ∈ Rn

+ such that xTY x < 0 and consider the function

f(k) = (kx)TY (kx) + (kx)Ty + y0. We have: f(k) = (xTY x)k2 + (xTy)k + y0, which is a strictly

concave quadratic function. Therefore, limk→+∞ f(k) = −∞, which means there exists z = kx ∈ Rn
+

such that zTY z + zTy + y0 < 0 (contradiction). Thus we have xTY x ≥ 0 for all x ∈ Rn
+. It means

that zT Ȳ z ≥ 0 for all z ∈ Rn+1
+ or Ȳ is copositive. �

The reformulation makes it clear that finding the (tight) upper bound Pu is a hard problem. Murty

[10] shows that even the problem of determining whether a matrix is not copositive is NP-complete. In

order to tractably compute an upper bound for the expected payoff P , we relax this constraint using a

well-known copositivity sufficient condition (see Parrilo [11] and references therein):

Remark 1 (Copositivity) If Ȳ = P +N , where P � 0 and N ≥ 0, then Ȳ is copositive.
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According to Diananda [5], this sufficient condition is also necessary if Ȳ ∈ Rm×m with m ≤ 4.

Now consider the second constraint, we will relax it using the following lemma:

Lemma 2 If there exists µ ∈ Rn
+,
∑n

k=1 µk = 1, such that Y µ =

 Y
y−

∑n
k=1 µkek

2

(y−
∑n

k=1 µkek)
2

T
y0 +K

 is

copositive, where ek is the k-th unit vector in Rn, k = 1, . . . , n, then xTY x+xTy+y0 ≥ min1≤k≤n xk−K

for all x ∈ Rn
+.

Proof. The second constraint can be written as follows:

min
x∈Rn

+

max
1≤k≤n

xTY x+ xTy + y0 − xk +K ≥ 0.

We have: max1≤k≤n−xk = maxz∈C −zTx, where C is the convex hull of ek, k = 1, . . . , n. If we define

f(x, z) = xTY x+ xTy + y0 − zTx+K, then the second constraint is

min
x∈Rn

+

max
z∈C

f(x, z) ≥ 0.

Applying weak duality for the minmax problem minx∈Rn
+

maxz∈C f(x, z), we have:

min
x∈Rn

+

max
z∈C

f(x, z) ≥ max
z∈C

min
x∈Rn

+

f(x, z).

Thus if maxz∈C minx∈Rn
+
f(x, z) ≥ 0 then the second constraint is satisfied. This relaxed constraint

can be written as follows:

∃z ∈ C : f(x, z) ≥ 0, ∀x ∈ Rn
+.

We have: C =
{∑n

k=1 µkek|µ ∈ Rn
+,
∑n

k=1 µk = 1
}

, thus the constraint above is equivalent to the

following constraint:

∃µ ∈ Rn
+,

n∑
k=1

µk = 1 : xTY x+ xTy + y0 −
n∑
k=1

µkxk +K ≥ 0, ∀x ∈ Rn
+.

Using Lemma 1, we obtain the equivalent constraint:

∃µ ∈ Rn
+,

n∑
k=1

µk = 1 : Y µ =

 Y
y−

∑n
k=1 µkek

2

(y−
∑n

k=1 µkek)
2

T
y0 +K

 is copositive.

Thus we have, xTY x + xTy + y0 ≥ min1≤k≤n xk − K for all x ∈ Rn
+ if there exists µ ∈ Rn

+,∑n
k=1 µk = 1, such that Y µ is copositive. �

From Lemma 1 and 2, and the copositivity sufficient condition in Remark 1, we can calculate an

upper bound for the expected payoff P as shown in the following theorem:
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Theorem 1 The optimal value of the following semidefinite programming problem is an upper bound

for the expected payoff P :

P cu = min Q · Y + µTy + y0

s.t.

 Y y
2

y
2
T y0

 = P 1 +N1, Y
y−

∑n
k=1 µkek

2

(y−
∑n

k=1 µkek)
2

T
y0 +K

 = P 2 +N2,

∑n
k=1 µk = 1,µ ≥ 0,

P i � 0,N i ≥ 0 i = 1, 2.

(4)

Proof. Consider an optimal solution (Y ,y, y0,P 1,N1,P 2,N2,µ) of Problem (4). According to

Remark 1, Ȳ is a copositive matrix. Therefore, (Y ,y, y0) satisfies the first constraint of Problem

(3) following Lemma 1. Similarly, the second constraint of Problem (3) is also satisfied by (Y ,y, y0)

according to Lemma 2. Thus, (Y ,y, y0) is a feasible solution of Problem (3), which means

P cu ≥ Pu.

We have Pu ≥ Pmax; therefore, P cu ≥ Pmax or P cu is an upper bound for the expected payoff P . �

3 Lower Bounds

The tight lower bound of the expected payoff P is Pmin = minX∼(µ,Q)+ E[(min1≤k≤nXk − K)+].

However, due to the non-convexity of the payoff function, it is difficult to evaluate Pmin. Applying

Jensen’s inequality for the convex function f(x) = x+, we have:

max{0,E[ min
1≤k≤n

Xk −K]} ≤ E[( min
1≤k≤n

Xk −K)+].

Define P̄min = minX∼(µ,Q)+ E[min1≤k≤nXk−K], then clearly, max{0, P̄min} ≤ Pmin or max{0, P̄min}

is a lower bound for the expected payoff P .

We have, P̄min can be calculated as follows:

Pmin = −maxf
∫

Rn
+

(K −min1≤k≤n xk)f(x)dx

s.t.
∫

Rn
+
xkf(x)dx = µk, ∀ k = 1, . . . , n,∫

Rn
+
xkxlf(x)dx = Qkl, ∀ 1 ≤ k ≤ l ≤ n,∫

Rn
+
f(x)dx = 1,

f(x) ≥ 0, ∀x ∈ Rn
+,

(5)
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where f is a probability density function.

Taking the dual, we obtain the following problem:

Pl = −minY ,y,y0 Q · Y + µTy + y0

s.t. xTY x+ xTy + y0 ≥ K −min1≤k≤n xk, ∀x ∈ Rn
+,

or equivalently,

Pl = −minY ,y,y0 Q · Y + µTy + y0

s.t. xTY x+ xTy + y0 + xk −K ≥ 0, ∀x ∈ Rn
+, k = 1, . . . , n.

(6)

Similarly, Pl ≤ P̄min according to weak duality and if the Slater condition is satisfied, Pl = P̄min.

Now consider the constraints of Problem (6). Using Lemma 1, each constraint of Problem (6) is

equivalent to a copositive matrix constraint:

xTY x+ xTy + y0 + xk −K ≥ 0, ∀x ∈ Rn
+ ⇔

 Y y+ek
2

y+ek
2

T
y0 −K

 is copositive.

With Remark 1, we can then calculate a lower bound for the expected payoff P as shown in the

following theorem:

Theorem 2 max{0, P cl } is a lower bound for the expected payoff P , where

P cl = −min Q · Y + µTy + y0

s.t.

 Y y+ek
2

y+ek
2

T
y0 −K

 = P k +Nk, ∀ k = 1, . . . , n

P k � 0,Nk ≥ 0 k = 1, . . . , n.

(7)

Proof. Consider an optimal solution (Y ,y, y0,P k,Nk) of Problem 7. According to Remark 1, the

matrix

 Y y+ek
2

y+ek
2

T
y0 −K

 is copositive for all k = 1, . . . , n. Lemma 1 shows that (Y ,y, y0) satisfies

all constraints of Problem 6. Thus (Y ,y, y0) is a feasible solution of Problem 6, which means

P cl ≤ Pl.

We have P̄min ≥ Pl and max{0, P̄min} ≤ Pmin; therefore, max{0, P cl } ≤ Pmin or max{0, P cl } is a

lower bound for the expected payoff P . �
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4 Computational Results

4.1 Call Options on the Minimum of Several Assets

We consider the call option on the minimum of n = 4 assets. In order to compare the bounds with the

exact option price, we assume that these assets follow a correlated multivariate lognormal distribution.

At time t, the price of asset k is calculated as follows:

Sk(t) = Sk(0)e(r−δ
2
k/2)t+δkWk(t),

where Sk(0) is the initial price at time 0, r is the risk-free rate, δk is the volatility of asset k, and

(Wk(t))nk=1 is the standard correlated multivariate Brownian motion. We use similar parameter values

as in Boyle and Lin [4]. The risk-free rate is r = 10% and the maturity is T = 1. The initial prices

are set to be Sk(0) = $40 for all k = 1, . . . , n. For each asset k, the price volatility is δk = 30%. The

correlation parameters are set to be ρkl = 0.9 for all k 6= l (and obviously, we can define ρkk = 1.0

for all k = 1, . . . , n). These values are used to calculate first and second moments, µ and Q, of

X = (Sk(T ))nk=1using the following formulae:

E[Xk] = erTSk(0), ∀ k = 1, . . . , n,

and

E[XkXl] = Sk(0)Sl(0)e2rT eρklδkδjT , ∀ k, l = 1, . . . , n.

The rational option price is e−rTP , where P is the expected payoff. The exact price is calculated by

Monte Carlo simulations of correlated multivariate Brownian motion described in Glasserman [6]. The

upper and lower bounds are calculated by solving semidefinite programming problems formulated in

Theorem 1 and 2.

In this report, all codes are developed using Matlab 7.4 and semidefinite programming problems are

solved with SeduMi solver (Sturm [12]) using YALMIP interface (Löfberg [8]). We vary the strike price

from K = $20 to K = $50 in this experiment and the results are shown in Table 1 and Figure 1.

In this example, we obtain valid positive lower bounds when the strike price is less than $40. The

lower and upper bounds are reasonably good in all cases. When the strike price decreases, the lower

bound tends to be better (closer to the exact value) than the upper bound.

4.2 Put Options on the Maximum of Several Assets

European put options written on the maximum of several assets also have non-convex payoff. The

payoff is calculated as P = E[(K −max1≤k≤nXk)+], where Xk is the price of asset k at the maturity.
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Option price with upper and lower bounds
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Figure 1: Prices of call options on the minimum of multiple assets and their upper and lower bounds
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Strike price 20 25 30 35 40 45 50

Exact option price 18.1299 13.7308 9.8097 6.6091 4.2340 2.5712 1.5011

Upper bound 23.3489 19.1889 15.1476 11.3819 8.0961 5.5452 3.8287

Lower bound 15.9625 11.4383 6.9142 2.3900 0.0000 0.0000 0.0000

Table 1: Call option prices with different strike prices and their upper and lower bounds

Similar to call options on the minimum of multiple assets, upper and lower bounds of this payoff can

be calculated by solving the following semidefinite programming problems:

min Q · Y + µTy + y0

s.t.

 Y y
2

y
2
T y0

 = P 1 +N1, Y
y+

∑n
k=1 µkek

2

(y+
∑n

k=1 µkek)
2

T
y0 −K

 = P 2 +N2,

∑n
k=1 µk = 1,µ ≥ 0,

P i � 0,N i ≥ 0 i = 1, 2,

(8)

and
min Q · Y + µTy + y0

s.t.

 Y y−ek
2

y−ek
2

T
y0 +K

 = P k +Nk, ∀ k = 1, . . . , n

P k � 0,Nk ≥ 0 k = 1, . . . , n.

(9)

Solving these two problems using the same data as in the previous section and varying the strike price

from $40 to $70, we obtain the results for this put option, which are shown in Table 2 and Figure 2.

Strike price 40 45 50 55 60 65 70

Exact option price 1.7419 3.4669 5.8114 8.7931 12.1431 16.0553 20.0943

Upper bound 4.2896 6.2629 9.0706 12.5363 16.4070 20.5079 24.4722

Lower bound 0.0000 0.0000 0.0000 3.8253 8.3495 12.8737 17.3979

Table 2: Put option prices with different strike prices and their upper and lower bounds

We also have valid positive lower bounds when the strike price is higher than $50. The lower bound

is closer to the exact value than the upper bound when the strike price increases. In general, both upper
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Option price with upper and lower bounds
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Figure 2: Prices of put options on the maximum of multiple assets and their upper and lower bounds
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and lower bounds are significant as compared to the exact option prices.
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